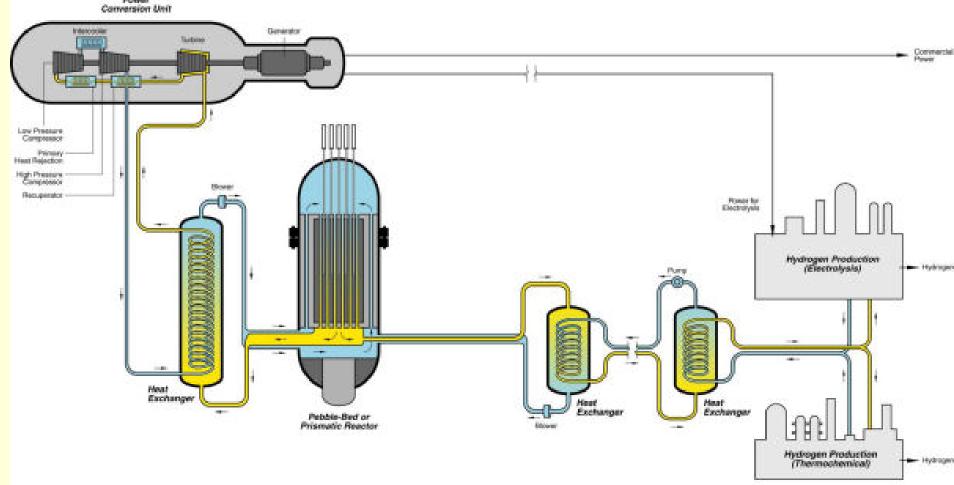

Graphite Moderated

Gas Cooled

Graphite = High Temperatures

- Reactor accident
 - Melting/sublimation point well above 3000; accident temperatures peak around 1600 C
 - Graphite cores are very large leading to large heat capacity to slow temperature rises in an accident
- Graphite will not burn in air even if heated
- Graphite will react with water/steam at elevated temperatures
- Irradiation produces a lot of ¹⁴C
- Need to operate to avoid Wigner energy buildup


Why High Temperatures?

Gas Cooled

- Helium is the coolant of choice
 - Good thermal conductivity
 - Inert
 - Volume is large: energy and equipment size penalty
- Some legacy designs use CO₂

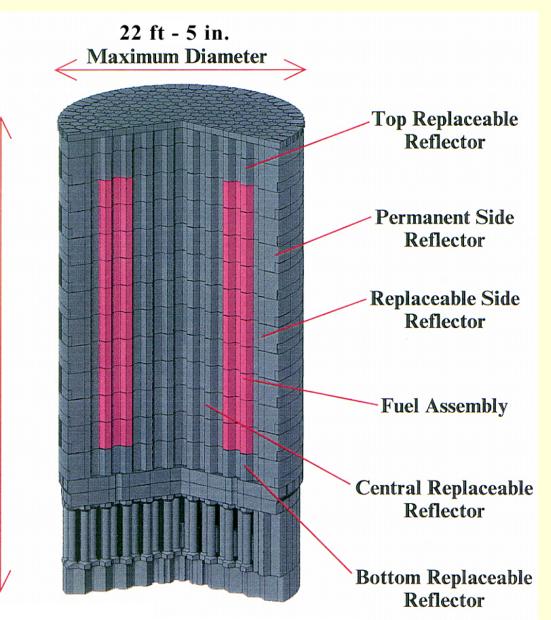
Very High Temperature Reactor (VHTR)

Block VHTR Core

Overall Length

in.

1


ı.

44 ft

- Material Graphite
- 102 Fuel Columns
- Hexagonal Fuel Block Dimensions:
 - Width Across Flats 0,36 m
 - Heigth 0,8 m
- Number of Fuel Blocks:
 - Standard 720
 - Control 120
 - Reserve Shutdown 180
- Number of Fuel Compacts 2919600
- Mass 870 tons

Outlet Temp 1000 C Power Density: 6.5 kW/L Thermal Efficiency: 47%

Block VHTR Features

- General Atomics reactor
- Passive cooling after accident
- Control rods contain boron carbide
- Still being developed
 - Materials
 - Optimization of temperatures
- Can be built in a variety of sizes
 Current focus is 600 MWt
- Minor upgrade of GA's Gas Turbine Modular Helium Reactor (GT-MHR)

What Needs Work

- These are high priority GEN IV designs
- High temperatures = materials problems
 - Graphite per se not an issue
 - Making fuel reliable
 - Metal components, esp. turbines, compressors, and heat exchangers
- Many countries pursuing VHTRs

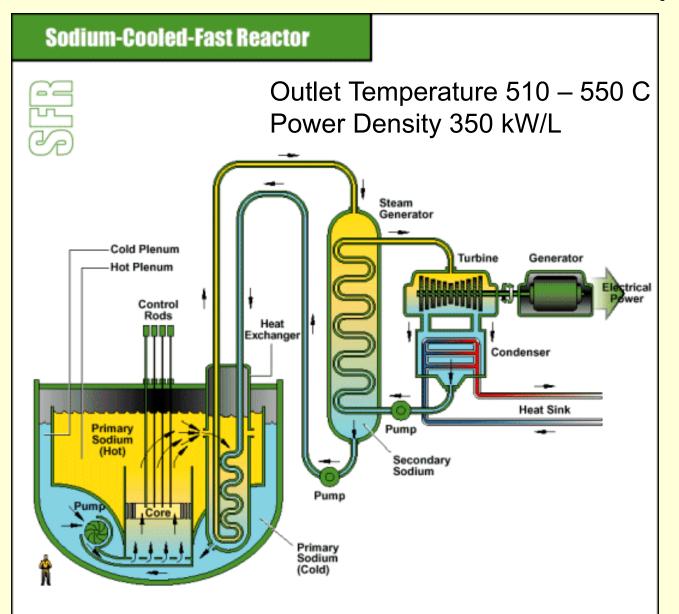
 US, South Africa, Japan, Russia, Netherlands, . .

Next-Generation Nuclear Plant

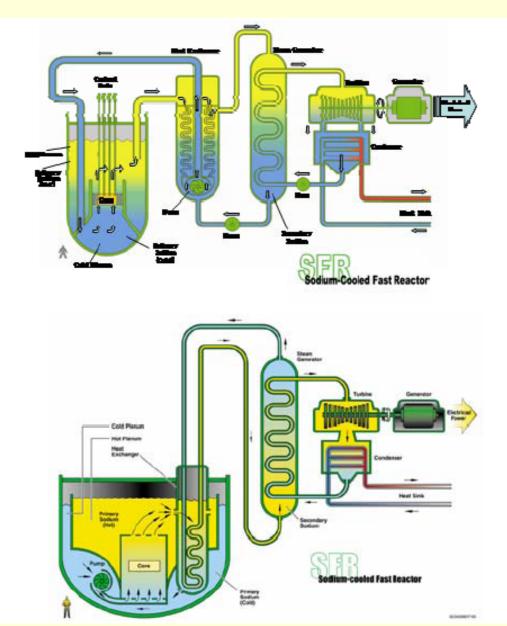
- NGNP is a DOE program to deploy a VHTR at Idaho National Laboratory
- Features
 - Dual purpose: electricity and process heat
 - Public-private partnership
 - NRC licensed
 - 2021 operation date planned
 - ≤600 MWt, 750 to 800

Fast (Unmoderated) Reactors

Sodium Cooled


Sodium (Na)

- Sodium
 - mp: 98 C/208 F
 - bp: 883 C/1621 F
- Advantages
 - Reactor operates at about atmospheric pressure
 - Excellent heat transfer properties
 - Not corrosive to stainless steel
- Disadvantages
 - Opaque
 - Reacts with air and can burn; reacts violently with water
 - Na²⁴, 15h half life, hard gamma

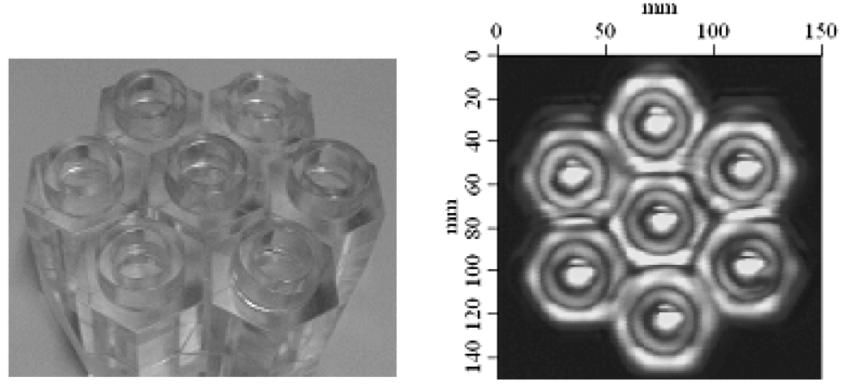


Sodium-Cooled Fast Reactor (SFR)

SFR Pool vs Loop

- Loop design has primary heat exchanger outside the pool of sodium
 – Favored by Japan
- Pool design contains primary loop in one vessel
 - Fewer pipes to break or leak
- GEN IV, high priority

SFR Safety


- Criticality terminated by increased temperatures because of core expansion and increased neutron leakage
- Sodium boiling can insert positive reactivity (positive sodium void coefficient) but can be managed by design

– Within limits: ²³⁸U presence is a key factor

 Future reactors designed for natural sodium circulation and passive heat transfer to the atmosphere

SFR Refueling Imaging

Ultrasonic images in liquid sodium

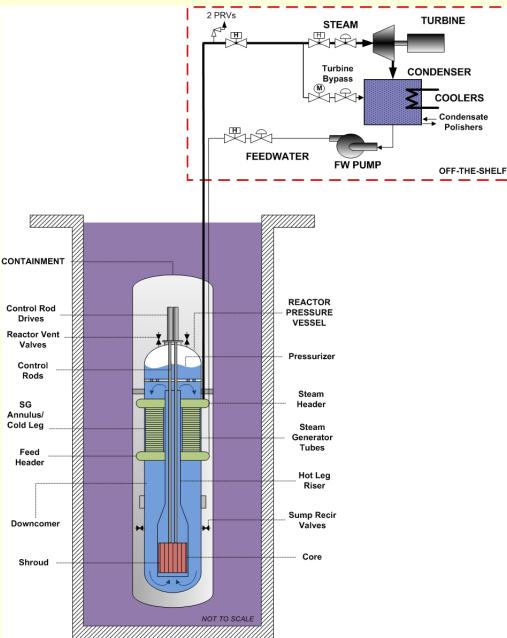
SFR Status

- 390 reactor-years worldwide
 - US: EBR-I, II; Fermi (commercial), Fast Flux Test Facility
 - France: Rhapsodie, Phenix, Superphenix
 - UK: Dounreay, Prototype Fast Reactor
 - Japan: Joyo, Monju
 - Russia: BN-350, 600
- Major issues
 - Reliability
 - Engineering to reduce cost

Small Modular Reactors

Small Modular Reactors (SMRs)

- No generally agreed definition
 - IAEA: <300 MWe, maybe 500 MWe
 - Conventional: <600 MWt (<200-300MWe)
 - Above 600 MWt natural circulation cooling becomes a challenge
- Objectives: One or more of the following
 - Factory construction and ship to site
 - Less costly than field construction
 - Power supply to remote sites or for small demand
 - Passively safe
 - Proliferation resistance
 - Build a module at a time: easier financing


NuScale PWR

- Vendor: NuScale Power Inc.
- Reactor Power: 150 MWt
- Electrical Output: 45 MWe
- · Coolant: Light Water
- Outlet Temperature: 296°C
- Fuel Design: 6' long, 17 x 17 assemblies
 - 4.95% enrichment
- · Refueling: 30 Months
- Application: Late 2010
- Reference: ML082130430

Cooling is natural circulation

Pool design

Integral steam generator

mPower PWR

Designer:	Babcock & Wilcox
	Company (B&W)

Reactor Power:

Electrical Output: 125 MWe

Outlet Conditions: 327°C

- Coolant: Light water
- Fuel Design: Proprietary

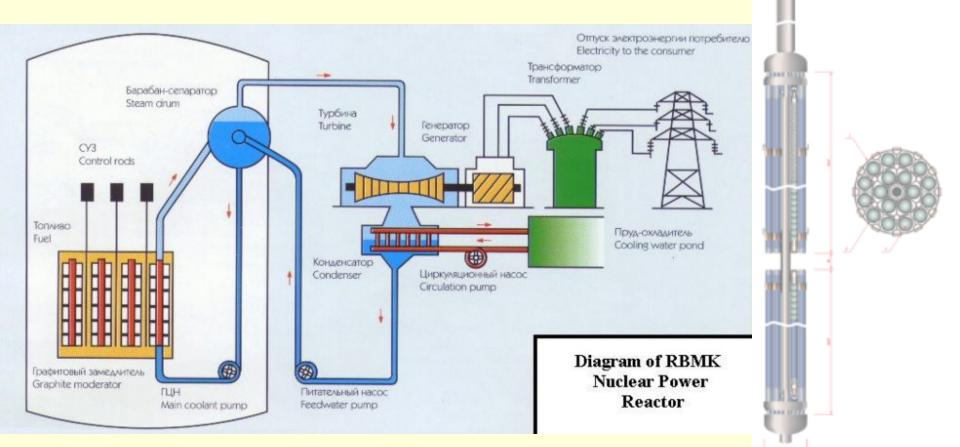
Refueling: Proprietary

- Letter of Intent: April 28, 2009
- Licensing Plan: Design Certification

Expected Submittal: Q4 CY 2012 Fuel is based on standard PWR design

400 MWt

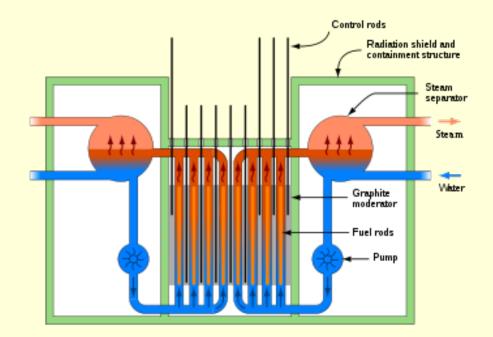
Integral steam generators



© 2010 Babcock & Wilcox Nuclear Energy, Inc. All rights reserved

Legacy Reactors

Reaktor Bolshoy Moschnosti Kanalniy (High Power Channel Reactor)


RBMK: A Russian BWR

Outlet Temperature 285 C Power Density 5-8 kw/L

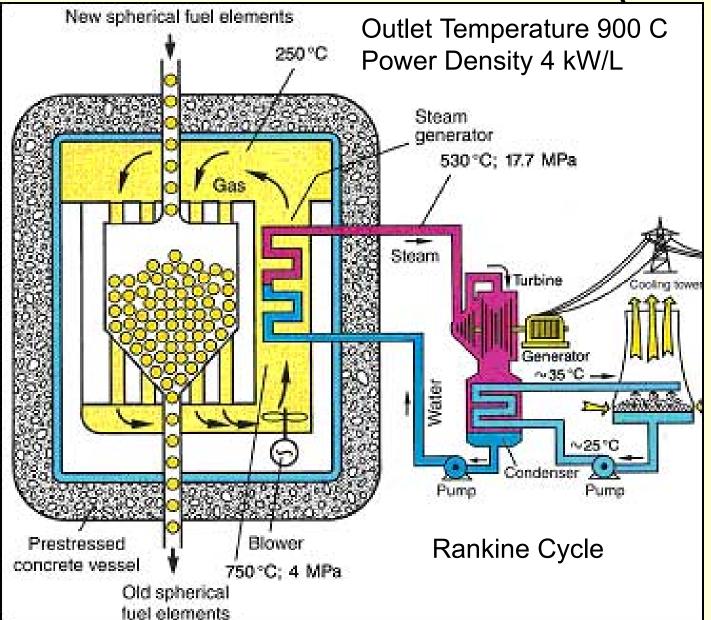
RBMK

- Graphite moderated, light water cooled
- Fuel in Zr pressure sleeves
- 2-3% enriched UO₂ fuel
- 18 built, 11 operating
 No more will be build
- Positive void coefficient
- No or partial (after TMI) containment

RBMK: Chernobyl Accident

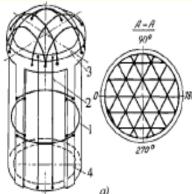
- Still uncertainties in cause and different versions of official reports exist
- Overview
 - Operating at low power to test system
 - Operators deviated from test procedures
 - RBMK reactors have inherent design flaws
 - Positive void coefficient
 - Control rods insert positive reactivity (graphite and water areas) before neutron poison is inserted
 - Nuclear reaction went out of control leading to steam explosions and fires
 - Hours required to extinguish fires

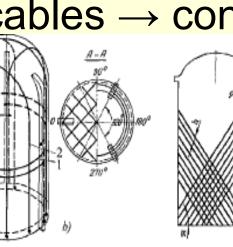
Reactor Deployment

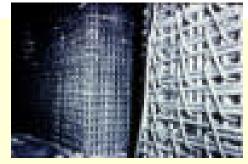

World Reactors

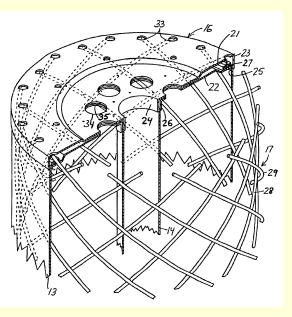
Region	Reactors in	operation (2010)	Reactors under construction (2010)		Nuclear Power (2008)	
	Number	Net Capacity (MWe)	Number	Net Capacity (MWe)	Use (EJ)	% of country's electricity generation
North America	122	113,316	1	1,165	9.76	19.04
Latin America	6	4,119	2	1,937	0.32	2.38
Western Europe	129	122,956	2	3,200	8.97	26.68
Central and Eastern Europe	67	47,376	17	13,741	3.64	18.30
Africa	2	1,800	0	0	0.14	2.11
Middle East and South Asia	21	4,614	6	3,721	0.16	0.99
Far East	90	80,516	32	34,820	5.35	10.15
World	441	374,697	60	58,584	28.34	14.03

Backup Slides

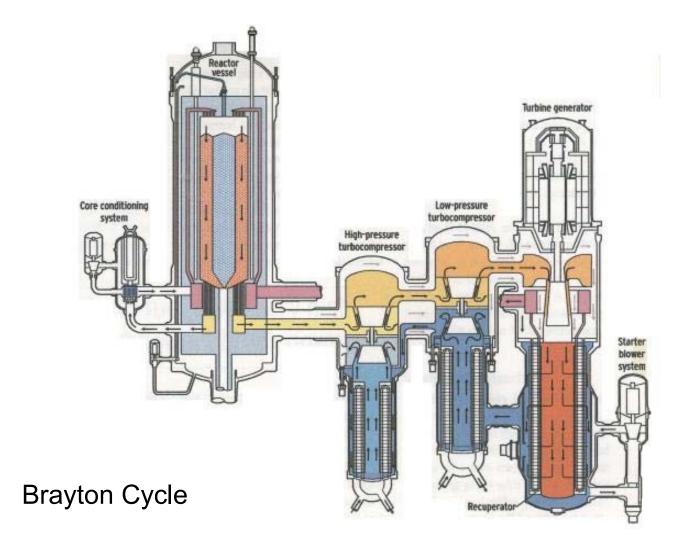

Pebble Bed Modular Reactor

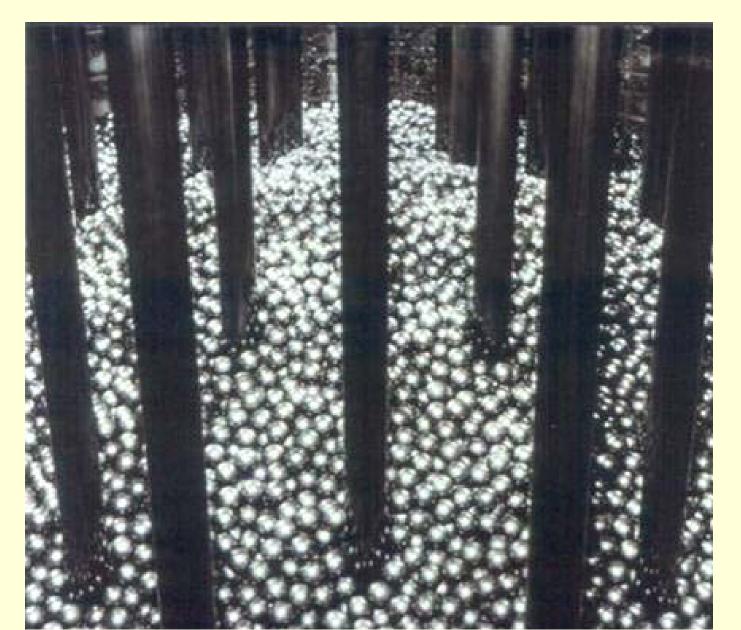

Pebble Bed Modular Reactor (PBMR)

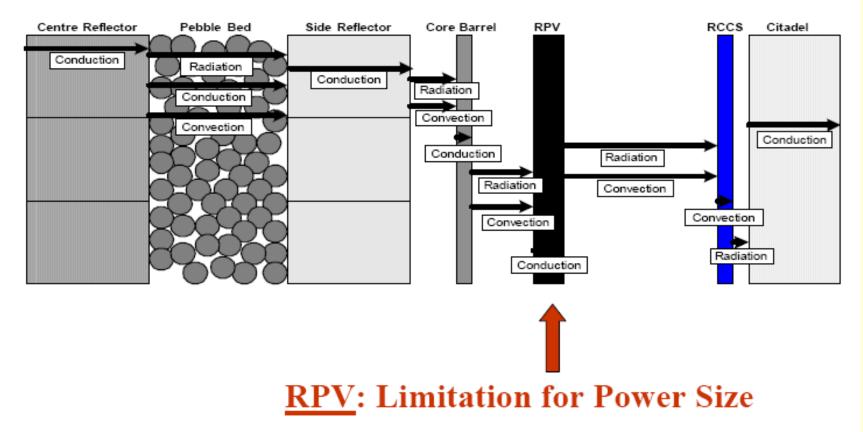



Pre-stressed Concrete Pressure Vessel (PCRV)

- Tension (stretch) steel cables in a form
- Pour concrete, cure; concrete bonds to cables
- De-tension cables → concrete compressed





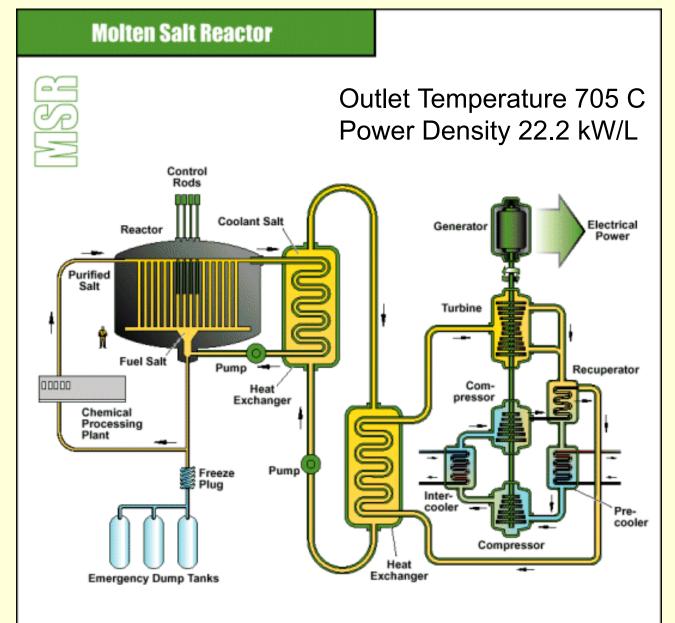

Pebble Bed Modular Reactor (PBMR)

Pebble VHTR Inside Reactor

Pebble VHTR Passive Heat Removal

(Volume, Surface, Maximum Temperatures etc.)

Pebble VHTR Features

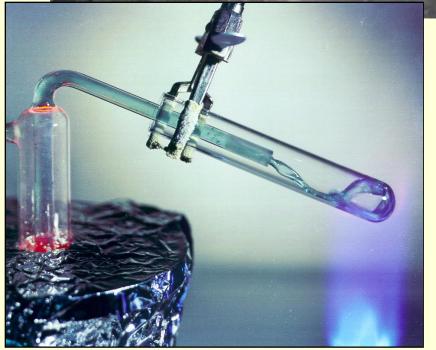

- Being built by South Africa
- Passively safe
- As of early fall 2010 the South African government withdrew support for the PBMR

- Prospects not good

Graphite Moderated

Molten Salt Cooled

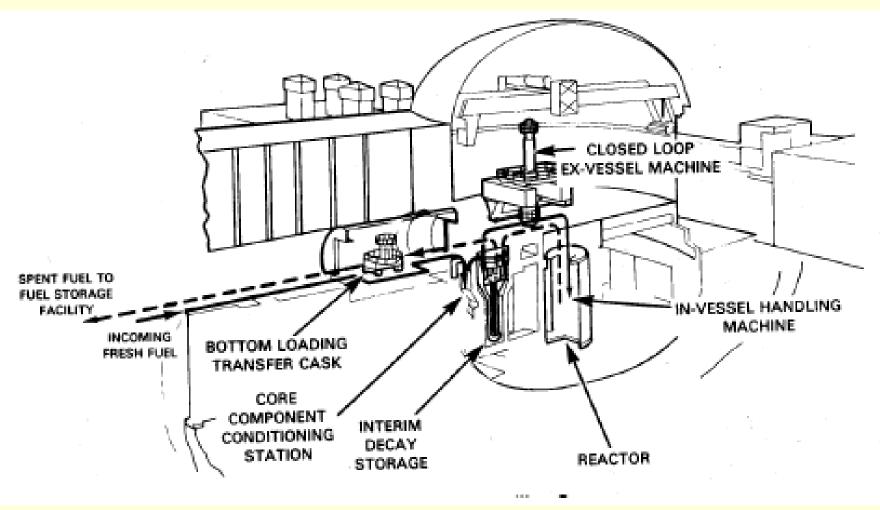
Molten Salt Reactor (MSR)



36

MSR Salt

- Salt is typically mixture of Li-Be-Th-U fluorides
 - mp ~325 C, bp ~1400 C
 - Stable to radiation and air
 - Good heat transfer
 - Not inherently corrosive
 - Low pressure
- Fuel dissolved in salt as are fission and activation products
 - Mix is somewhat corrosive
- Can use online fuel/salt reprocessing


MSR Features

- Passively safe, atmospheric pressure
 - Old approach: freeze plugs draining to critically safe and passively cooled dump tanks
 - New approach: Heat transfer through walls and passive heat removal
 - Similar to VHTR
- Can be a breeder on the thorium fuel cycle
- Molten Salt Reactor Experiment was operated at ORNL
- GEN IV reactor but low priority: mostly academic studies
 - Materials are key issue

Fast (Unmoderated) Reactors

Sodium Cooled

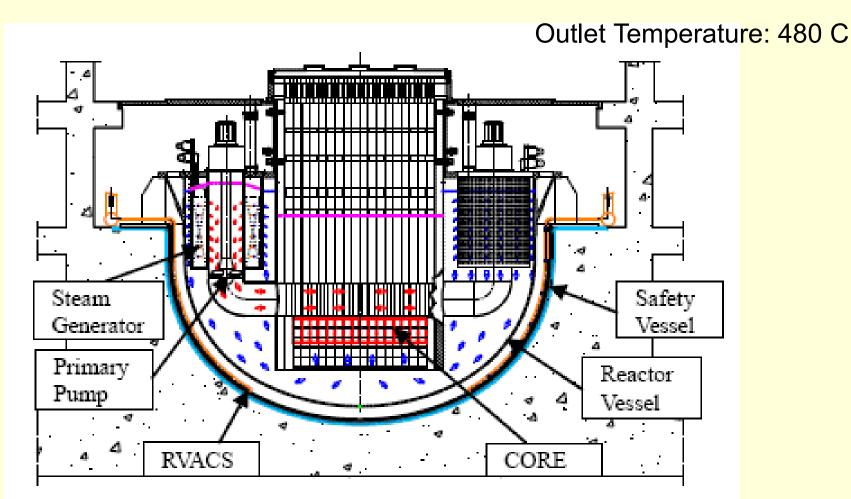
SFR Refueling Sequence

SFR External Refueling Machine

Fast Reactors

Metal Cooled Except Na

Alkali Metals

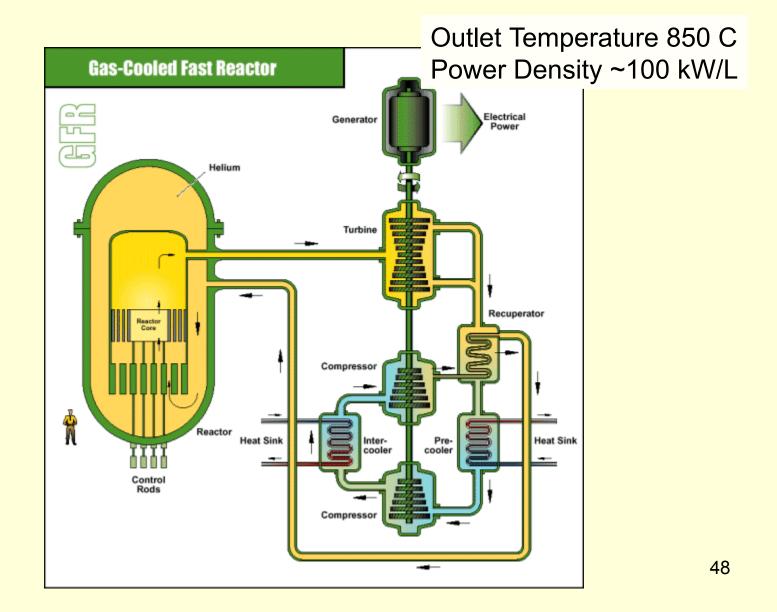

- Lithium
 - Advantage: Low vapor pressure
 - Disadvantage: Expensive, high cross section, produces tritium
- NaK
 - Advantage: melting point below room temperature
 - Disadvantage: Poorer heat transfer, more expensive
 - Used in EBR-I and space power sources

Heavy Metal: Hg and Pb/Bi

- Mercury
 - Advantage: None for power reactors
 - Disadvantages: Toxic, high cross section, high vapor pressure
- Lead-bismuth eutectic
 - Advantages: 200 C lower melting point than lead, more compatible with water than alkali metals
 - Disadvantages: Produces highly toxic and mobile
 Po²¹⁰, more corrosive than lead
 - Has been used in Russian submarine reactors

Lead-Cooled Fast Reactor (LCFR)

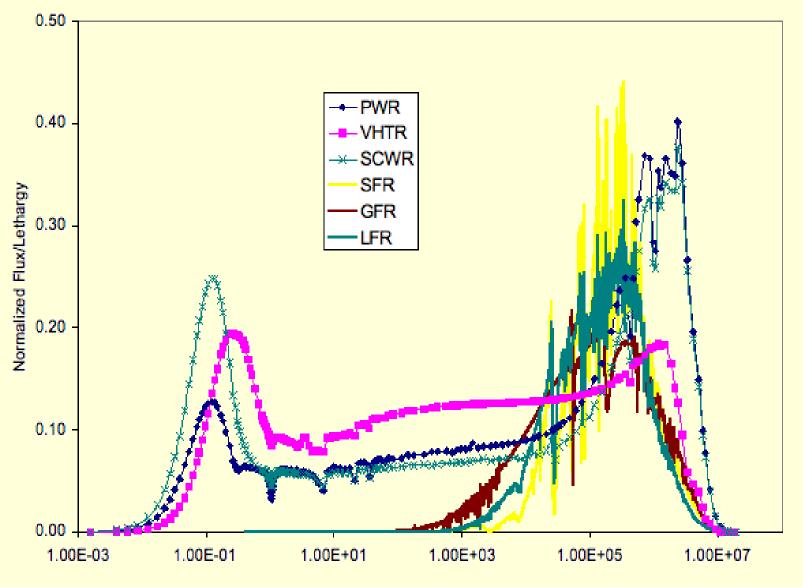
- European Lead System (ELSY)
- GEN IV, low priority


ELSY

- Being developed by a consortium of European countries led by Euratom
 - Lead country unclear; Russia?
- Passively safe
- Little interest in the U.S.
- Major issue is finding compatible materials with lead at ~480 C

Fast Reactors

Gas Cooled


Gas-Cooled Fast Reactor (GCFR)

GCFR

- Essentially a VHTR using fuel pellets and assemblies instead of blocks or pebbles
- Low-priority GEN IV system
- Issues
 - 850 C (1560 F) outlet temperature and pressure (~10,000 psi) are very high
 - Materials for pressure vessel, equipment, and clad: ceramics?
 - Decay heat removal at shutdown and in accidents: low thermal inertia, He heat transfer properties not good relative to others
- Viability uncertain

GEN IV Reactor Neutron Spectra

Small Modular Reactors

SMRs

Name	Capacity	Туре	Developer
KLT-40S	35 MWe	PWR	OKBM, Russia
VK-300	300 MWe	PWR	Atomenergoproekt, Russia
CAREM	27 MWe	PWR	CNEA & INVAP, Argentina
NHR-200	200 MWt	PWR	INET, China
IRIS	100-335 MWe	PWR	Westinghouse-led, international
mPower	125 MWe	PWR	Babcock & Wilcox, USA
SMART	330 MWt	PWR	KAERI, South Korea
NuScale	45 MWe	PWR	NuScale Power, USA
MRX	30-100 MWe	PWR	JAERI, Japan
HTR-PM	2x250 MWt	HTR	INET & Huaneng, China
PBMR	200 MWt	HTR	Eskom, South Africa
GT-MHR	285 MWe	HTR	General Atomics (USA), Minatom (Russia)
BREST	300 MWe	LMR	RDIPE, Russia
SVBR-100	100 MWe	LMR	Rosatom/En+, Russia
FUJI	100 MWe	MSR	ITHMSO, Japan-Russia-USA

VHTR (NGNP) can also be built as a small reactor For more see http://www.world-nuclear.org/info/inf33.html

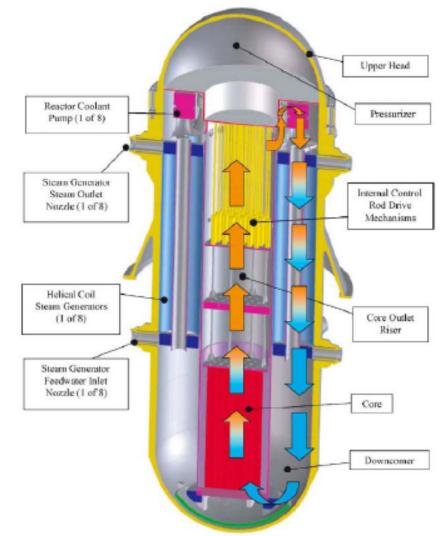
More SMRs

		CAREM	ENHS	IRIS-50	KLT-40	MRX	MSBWR	RS-MHR	TPS	4S
Designer		CNEA	UCB	w	OKBM	JAERI	GE/ Purdue U.	GA	GA	CRIEPI
Туре		Integral PWR	LMR	Integral PWR	PWR.	Integral PWR	BWR.	HTGR.	PWR.	LMR.
Rating		25 MWe	50 MWe	50 MWe	35 MWe	30 MWe	50 MWe	10 MWe	16.4 MWe	50 MWe
Primary Syst	em Pressure	12.3 MPa	N/A	-	13 MPa	12 MPa	-	-	3 MPa	N/A
Reactor Vessel	Height	11 m	19.6 m	14-16 m	3.9 m	9.4 m	8.5 m	8 m	11.6 m	23 m
	Diameter	3.1 m	3.2 m	3.5 m	2.2 m	3.7 m	3.5 m	3.4 m	2.8 m	2.5 m
Reactor Core	Height	1.4 m	1.25 m	1.8 m	0.95 m	1.4 m	1.9 m	3.6 m	l m	4 m
	Diameter	1.3 m	2 m	1.5 m	1.2 m	1.5 m	3.1 m	3 m	l m	0.8 m
Avg. Power Density*		55 kW/l	6 kW/m	13 kW/m	155 kW/l	42 kW/l	8.3 kW/m	4 kW/1	95 kW/1	61 kW/l
Fuel/Type		UO ₂ pins	U-Zr metal	UO2 pins	U-Al alloy	UO ₂ pins	UO ₂ pins	UO2 particles	UZrH pins	U-Zr metal
Fuel Enrichm	ent	3.4 %	13 %	4.95 %	-	4.3%	5 %	19.9%	19.9%	~15 %
Refueling Fre (Percent Rep		~1 year (50%)	15 years (100 %)	5-9 years	2-3 years (100%)	~ 4 years (50%)	10 years	6-8 years	1.5 years (50%)	10 years (100%)
Coolant flow rate		410 kg/s	0.51 m/s	-	722 kg/s	1250 kg/s	620 kg/s	-	419 kg/s	633 kg/s
Core Inlet Temperature		284 °C	400 °C	-	278 °C	283 °C	279 °C	500 °C	182 °C	355 °C
Core Outlet Temperature		326 ℃	550 °C	-	318 °C	298 °C	14.3% quality†	850 °C	216 °C	510 °C

* the amount of power generated in a given volume of the reactor core kW per liter, or power in a given length kW per meter.

† BWRs measure performance in terms of steam quality (percent by weight of vapor versus liquid) at the core outlet

"-"= Not Provided


International Reactor Innovative Secure (IRIS) PWR

- Vendor: Westinghouse
- Reactor Power: 1000 MWt
- Electrical Output: 335 MWe
- Coolant: Light water
- Outlet Temperature: 327°C
- Fuel Design: 17 x 17 assemblies
 4.95% enrichment UO2
- Refueling: 3 3.5 years
- Application: Late 2012
- Reference: ML081270251

Can be scaled down to 100 MWe

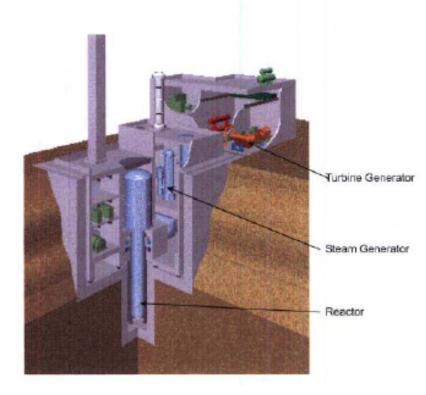
Forced circulation in operation

Integral steam generator

Hyperion LMR

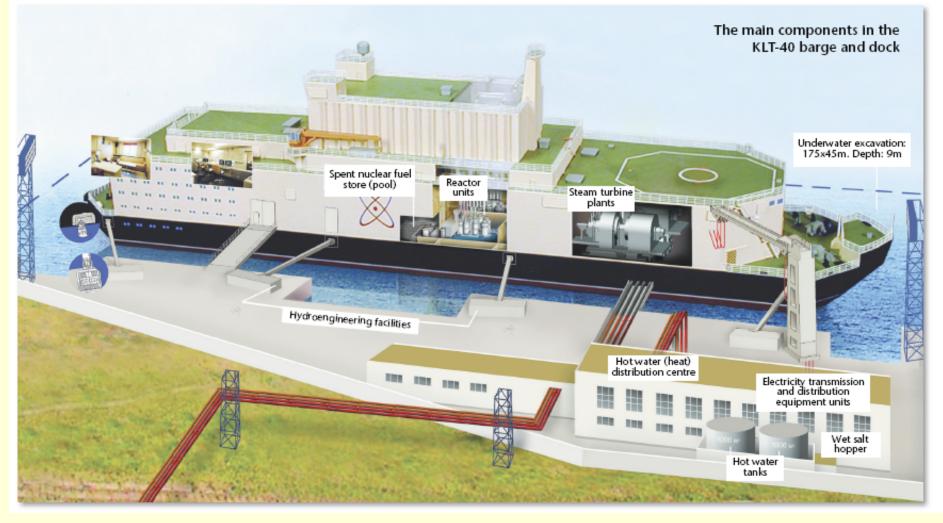
Reactor Power	70MV
Electrical Output	25MV
Lifetime	8 – 10
Size (meters)	1.5w :
Weight (ton)	Less t
Structural Material	Staink
Coolant	PbBi
Fuel	Stain
Enrichment (% U-235)	<20%
Refuel on Site	No
Sealed Core	Yes
License	Desig
Passive Shutdown	Yes
Active Shutdown	Yes
Transportable	Yes –
Factory Fueled	Yes

70MW thermal	
25MW electric	
8 – 10 years	. 0.
1.5w x 2.5h	1
Less than 50	
Stainless Steel	
PbBi	
Stainless clad, uranium nitride	<u>`</u>
<20%	-
No	
Yes	.`
Design Certification	-
Yes	
Yes	
Yes – intact core	
V	



Quartz neutron reflector

Super-Safe, Small, and Simple (4S)


- Vendor: Toshiba
- Reactor Power: 30 MWt
- Electrical Output: 10 MWe
- Coolant: Liquid- Metal (Sodium)
- Outlet Temperature: 510°C
- Fuel Design: Hexagonal fuel assemblies
 U-10%Zr Alloy
- Refueling: 30 years
- Application: Late 2009
- **Reference:** ML072950025 Reflector moves down core at 1 mm/week

After 14 y a neutron absorber in the center of the core is removed & the process is repeated

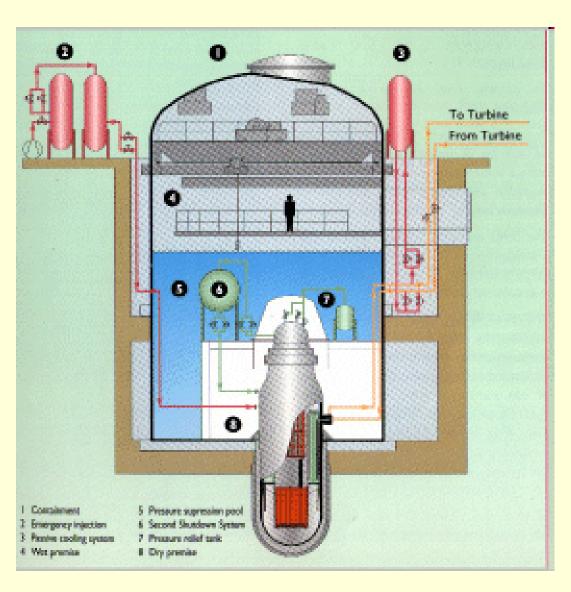
Example of a "traveling wave reactor"; also called a "nuclear battery"

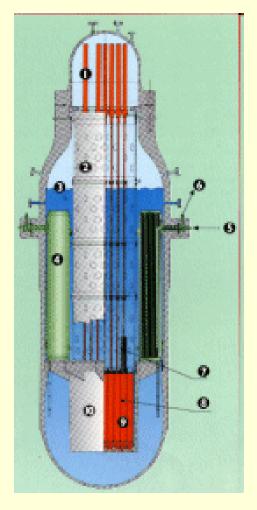
Russia: KLT-40S PWR

Two reactors on one barge

Russia: KLT-40S PWR

- . Based on icebreaker reactor design
 - _ Natural convection cooling
 - _ Prototype due to be completed next year


Main data for the KLT-40S reactor			KLT-40S core characteristics				
Reactor type	Pressurised-water, with vessel		Energy supply per core load (TWh)	2.1			
Thermal power (MWt)	150		Service life (h)	21,000			
Electric power (MWe)	35 (with 25 Gcal/h of low-		Campaign duration (years)	2.3			
	grade heat output); 19.4 (with max thermal power output, 73 Gcal/h)		Core height (mm)	1200			
			Core diameter (mm)	1219			
Number of fuel assemblies	121		Specific fuel rating (kW/l)	119			
Refuelling interval (years)	2.3 (prototype) 3.5 (serial production)		Maximum fuel enrichment (%)	15.7			
Primary circuit pressure (MPa)			U235 charge (kg)	179.2			
Primary circuit temperature at			Uranium charge (kg)	1273			
core outlet/inlet (℃)			Number of fuel elements in the core	8673 (in 121 assemblies)			
Steam output (t/h)	240		Maximum fission fragment density in the fuel (g/cm ³)	0.72			
Superheated steam pressure at	3.72		Maximum fast neutron fluence with E>0.1MeV (m ⁻²)	1.4x10 ²⁶			
steam generator outlet (MPa)			Average unloaded fuel burn-up for ceramic fuel (MWday/kgU)	46			
Superheated steam temp. at SG outlet (°C)	290		Fuel form unknown, perhaps U-Zr alloy				


Other Russian SMRs

- All do or can involve co-generation
- RITM-200: Replacement for KLT-40S
 - -210 MWt, 55 MWe, one reactor per barge
 - Internal steam generators
 - Passive safety features
- VBER-150, 300: Larger barge mounted units

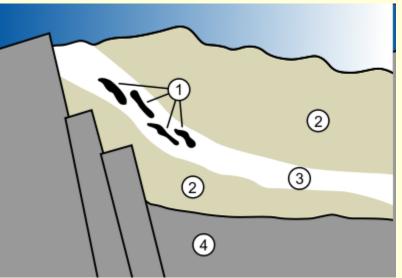
 Based on VVER (fairly standard PWR) technology
- VK-300
 - 110 MWe plus steam

CAREM PWR

CAREM PWR

- Designed by INVAP (Argentina)
- 100 MWt, 25 MWe
- Cooling: Natural
- Integral steam generators
- Low enriched uranium dioxide fuel
 - Gadolinia burnable poison

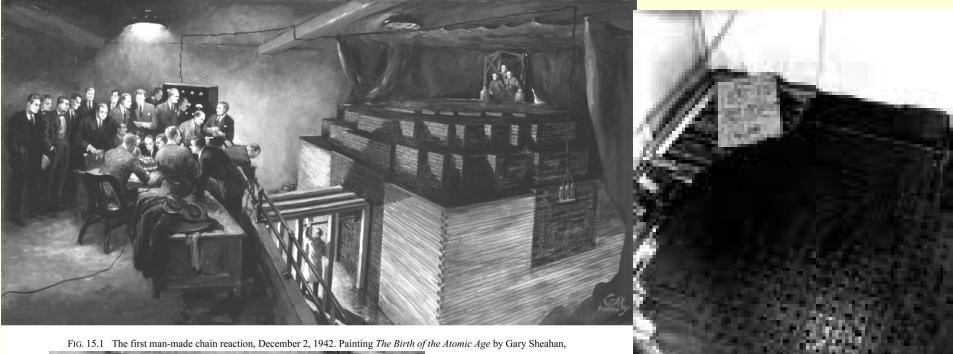
Traveling Wave Reactor


- A: Coolant (Na) pumps
- B: Gas expansion area
- C: Depleted uranium metal fuel (black spent, green unburned)
- D: Fission wave (red)
- E: Breeding wave (yellow)
- F: Liquid sodium coolant (core temp high: 550 C)
- Claim up to 60y of operation
- Being developed by TerraPower as a private venture

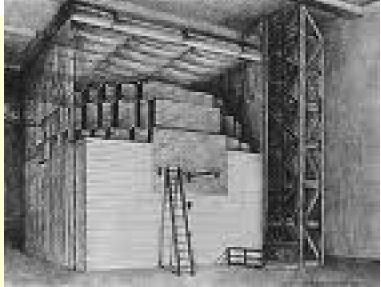
Legacy Reactors

Ultimate Legacy Reactor: Oklo

- French U mine in Gabon (1.8 GY old) found abnormally low ²³⁵U content (0.44% vs 0.71%)
- Analysis found remnants of fission products
- Explanation
 - Uranium concentrations were high
 - ~100MY ago the ²³⁵U concentration was ~3%
 - Water entered and the ore deposit was periodically critical



Oklo geological situation


- 1. Nuclear reactor zones
- 2. Sandstone
- 3. Uranium ore layer
- 4. Granite

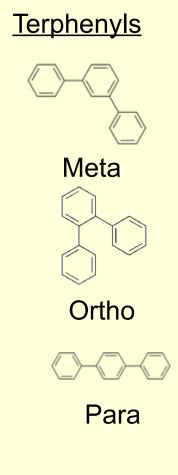
Chicago Pile 1

SCRAM = Safety Control Rod Axe Man?

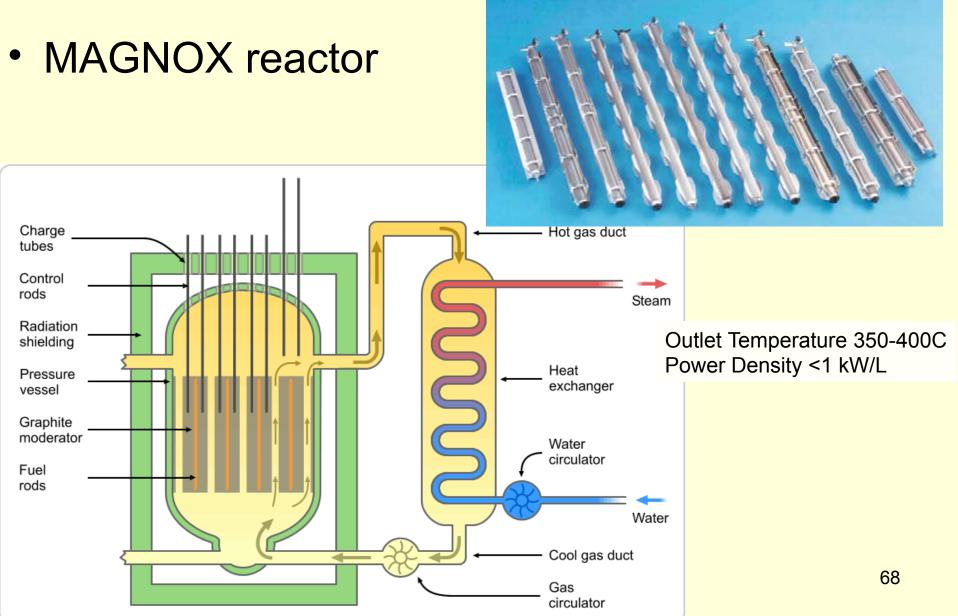
Aqueous Homogeneous Reactor

- Dissolve fuel in aqueous acid: sulfuric, nitric
- HRE: 1 MWt, made power
 - Sulfuric acid
 - Critical in the bulge
 - Vessel corroded through
- ARGUS: 20 kWt
 - Sulfuric acid
 - Used for isotope production
- B&W: Proposed
 - Acid system unknown
 - Produce Mo-99 for medicine

Homogeneous Reactor Experiment



ARGUS


B&W Isotope Production Reactor

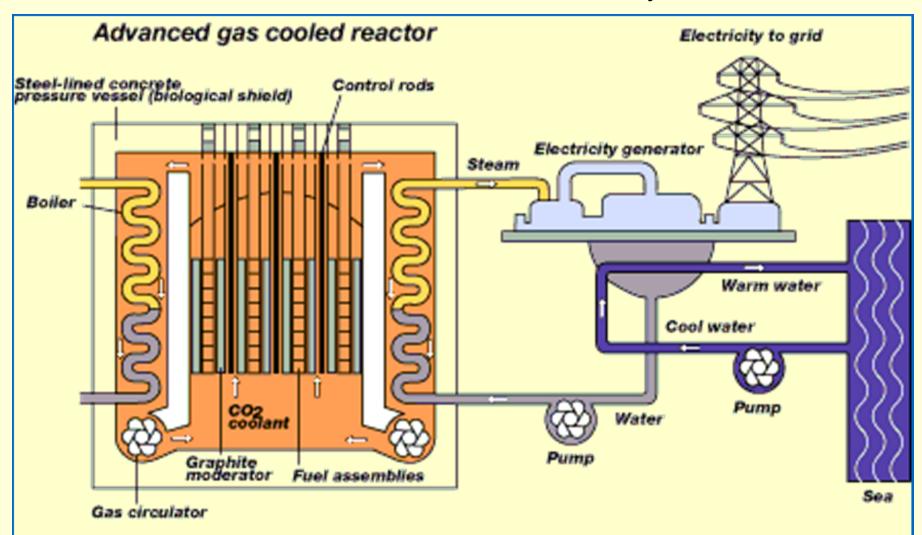
Organic-Cooled Reactors

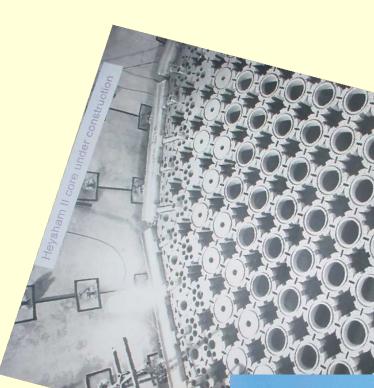
- Organic coolant moderator
 - Advantages
 - Good moderating properties
 - Low vapor pressure
 - Disadvantages
 - Radiolytic/thermal instability
 - Poor heat transfer
- Reactors
 - Piqua, OH: 45 MWe
 - Organic degradation forced closure
 - Canada: 60 MWe, heavy water moderated, organic cooled
- No current interest

Magnesium Non-Oxidizing Reactor

MAGNOX

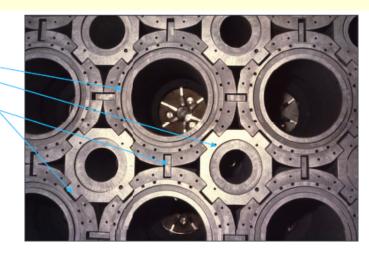
- Named for alloy used in fuel
- Key features
 - Graphite moderator
 - CO₂ Coolant
 - Online refueling, PCRV
 - Natural uranium




- Used for Pu and power production in UK, France
- Most shut down or close to it
- UK MAGNOX design is the basis for the North Korean Pu production reactors

Advanced Gas-Cooled Reactor

AGR


Outlet Temperature 635 C Power Density ~2 kW/L

AGR

- > Core is an arrangement of
 - Fuel bricks (forming channels for fuel)
 - Interstitial bricks (forming channels for control rods
 - Keying system which holds structure together

AGR

- An improved MAGNOX
- Uranium dioxide fuel in tubes, 2-3% enriched
- 15 built, 14 still operating
 Some operating with restrictions
- 15th: Windscale/Sellafield
 Accident